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1 Executive Summary

We tested the ability to predict the system reactivity, described by alpha, given a density
profile using a simple linear system response. We generated a suite of 1-dimensional density
profiles that consisted of nominal density, a discontinuity, and a decay. These profiles were
prescribed a functional form and the mass was conserved in all cases. From these density
profiles, we calculated the alpha value of the 3-dimensional system.

We calculated a linear response function given a training set of the 1-dimensional density
profiles, and the system reactivity described by alpha. We tested the robustness of the
response function using the remaining test data. Our results showed very good agreement
between the predicted and calculated test values, where the distribution of alpha differences
was centered about zero and had a standard deviation of 0.005 gens/shake. The predicted
and calculated alpha values did not significantly differ (t=-0.0009 p<0.99).

We used Singular Value Decomposition (SVD) to reduce the matrix rank by retaining
95% of the cumulative singular value contributions. This reduced the matrix rank by 91.7%.
We generated the linear response matrix and calculated the difference between the predicted
and calculated alpha values. Using the reduced order matrix, we showed good agreement
between the predicted and calculated alpha values where the distribution of differences was
centered near zero, the standard deviation was 0.006 gens/shake, and the statistical t-test
showed good agreement (t=0.02, p<0.98).

These results show a linear relationship between a series of 1-dimensional density profiles,
where the mass was conserved, and the system reactivity. The next steps of this work will
be to investigate the linear response using 2-dimensional density profiles.

2 Background

This study investigates the linear relationship between 1-dimensional density profiles and
the reactivity of the 3-dimensional system. We sought to generate a response function from
a training set of density profiles and utilize that response function to predict alpha for a
testing set of density profiles.

3 Methods

We generated a series of 1-dimensional density profiles by systematically varying the param-
eters that define the profile. Then, we calculated the alpha values for each of the profiles.
Finally, we solved for a linear response function to predict the alpha value given a density
profile.

3.1 Density Profile Generation

We generated a suite of 1-dimensional density profiles that consisted of an initial density,
a discontinuity, and a decay. These profiles were generated using the functional form as
specified below. We first calculated an initial outer boundary radius based upon the mass
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and initial density,

Rb0 =

(
M

4
3
· π · ρ0

)(1/3)

, (1)

where Rb0 is the initial outer boundary radius, M is the mass, and ρ0 is the initial density.
In all cases, the mass was 17000 grams and the initial density was 19.0 g/cc. Next, we
calculated the discontinuity density, ρs, as,

ρs = ρb ·
(
Rs

Rb0

)−1/4

, (2)

where ρb is the density at the outer boundary, Rs is the radius at which the discontinuity
occurs, and Rb0 initial outer boundary radius defined in Equation 1. After the discontinuity,
the density decayed by a power law, defined by,

ρ(r) =

[
1 − r −Rs

Rb −Rs

]γ
(ρs − ρb) + ρb, (3)

where Rs is the radius at which the discontinuity occurs, Rb0 is the initial outer boundary
radius, γ is the power law, ρs is the density at the discontinuity, and ρb is the density at the
boundary. The mass of the profile was conserved to 17000 grams in all cases by calculating
a final outer boundary radius, Rb.

We generated 4900 cases, varying the density at the outer boundary, ρb; the power law,
γ; and the discontinuity radius, Rs, as shown in Table 1. A plot showing some example

Table 1: The range of parameters that were used to generate a suite of density
profiles.

Parameter Value Range
ρb 19.0–20.0
γ 1.0–1.5
Rs 0.01–0.99

1-dimensional density profiles is shown in Figure 1.

3.2 Alpha Calculation

We used the 1-dimensional density profiles to generate 3-dimensional objects in MCNP6 [1]
and calculated keff for each of the density profiles. The cases were sorted such that when keff
was greater than 1.02, we ran the acode in MCNP6 to calculate alpha. For cases where keff
was less than 1.02, we used a 14.1 MeV neutron source and tallied the number of neutrons
leaving the outermost surface as a function of time. Alpha was calculated by differentiating
the tally by the time steps, 1

n
dn
dt

, the resulting noisy signal was smoothed using a moving
boxcar of width 4, and alpha was calculated at 3 shakes after source injection.
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Figure 1: Examples of some 1-dimensional density profiles.

3.3 Response Function Calculation

The linear response function was calculated using the form,
ρ1(r1) ρ1(r2) . . . ρ1(rm)
ρ2(r1) ρ2(r2) . . . ρ2(rm)

...
...

. . .
...

ρn(r1) ρn(r2) . . . ρn(rm)



R(r1)
R(r2)

...
R(rm)

 =


α1

α2
...
αn

 , (4)

where the leftmost matrix contains the density profiles, the middle matrix is the response
matrix, and the result is the matrix containing the alpha values. We solved this linear
equation using 4700 density profiles to obtain the response function. Then we tested the
result using the remaining 200 density profiles, multiplying by the response matrix, and
calculating alpha.

In order to reduce the dimensionality of the system, we used Singular Value Decom-
position (SVD) to reduce the rank of the data matrix. The principal components can be
calculated by,

M = UΣV ∗, (5)

where M is an m × n matrix, U is an n × n unitary matrix, Σ is an n × m rectangular
diagonal matrix representing the singular values, and V is an m ×m unitary matrix. The
matrices U and V are orthogonal matrices that contain the orthonormal eigenvectors.

We reduced the rank of the matrix by taking 95% of the cumulative distribution function
(CDF) of the singular values and recomputing the matrix, M ,

M95 = U95Σ95V
∗
95. (6)

This reduced matrix representation of the data was used to calculate the linear response
function. We tested the performance of the linear response function using the 200 test
density profiles.
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4 Results

We calculated the linear response function relating 1-dimensional density profiles with their
calculated alpha value by solving Equation 4. We used 4700 randomly selected cases for
calculating the response matrix and used the remaining 200 cases for testing the response.

4.1 Linear Response Function: Full Rank

In our initial assessment of this technique, we used the full rank matrix to calculate the
response function. The predicted and calculated alpha values from the training data, along
with the differences, are shown in Figures 2a and 2b. A histogram of the differences between
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Figure 2: The predicted alpha values from the full rank response matrix along
with the alpha values calculated from MCNP using the training data.

the predicted and calculated alpha values are shown in Figure 2c. The deviations were
centered around zero and had a standard deviation of 0.002 gens/shake. The predicted and
calculated alpha values did not significantly differ (t=4.6e-7, p<0.99).

Using the test data cases, we investigated the feasibility of a linear response model to pre-
dict the alpha value given a 1-dimensional density profile. Figure 3 shows the predicted and
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Figure 3: The predicted alpha values from the full rank response matrix along
with the alpha values calculated from MCNP using the test data.
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calculated alpha values from the test dataset. There was very good agreement in the alpha
values from this linear response model. The difference between the predicted and calculated
alpha values were centered around zero with a standard deviation of 0.005 gens/shake and
the alpha values did not significantly differ (t=-0.0009 p<0.99).

4.2 Linear Response Function: Reduced Rank

Next, we sought to reduce the rank of the information matrix using SVD. We calculated
the matrix, Σ from Equation 5 and plotted the CDF of the singular values. We retained
values up to 95% of the CDF and discarded the remainder. This reduction utilized 8.3%
of the principle components, thus significantly reducing the matrix redundancy. Using the
remaining singular values and eigenvectors, we generated M95 as shown in Equation 6.

Using the reduced matrix, M95, we calculated the response matrix as shown in Equation
4. The predicted and calculated alpha values, along with the differences, from the training
data are shown in Figures 4a and 4b. A histogram plot of the differences in the predicted
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Figure 4: The predicted alpha values from the reduced rank response matrix
along with the alpha values calculated from MCNP using the training data.

and calculated alpha values is shown in Figure 4c. The distribution was centered about
zero and the standard deviation was 0.005 gens/shake. The predicted alpha values did not
significantly differ from the calculated alpha values (t=1.3e-5, p<0.99).

We tested the linear response matrix calculated using the reduced order SVD matrix. The
predicted and calculated alpha values, along with the differences, are shown in Figures 5a and
5b. Figure 5c shows the distribution of differences between the predicted and calculated alpha
values. The mean was centered around 0.0005 gens/shake with a standard deviation of 0.006
gens/shake. These results showed good agreement between the predicted and calculated
alpha values using a response matrix generated from the reduced order training data matrix
(t=0.02, p<0.98).
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Figure 5: The predicted alpha values from the reduced rank response matrix
along with the alpha values calculated from MCNP using the test data.

5 Conclusions

We calculated the linear response matrix that, given a 1-dimensional density profile, could
predict the system alpha value with very good agreement to the calculated alpha value. This
study showed a linear relationship between a density field and the system reactivity.

In testing the response matrix, we showed that the distribution of differences between the
calculated and predicted alpha values were centered about zero and had a standard deviation
of 0.005 gens/shake. Overall, there was very good agreement between the predicted and
calculated alpha values (t=-0.0009 p<0.99).

In order to reduce the rank of the matrix, we used SVD to retain 95% of the cumulative
singular values. Using this reduced matrix, we calculated the linear response matrix. These
results showed good agreement between the predicted and calculated alpha values where the
distribution was centered near zero, the standard deviation was 0.006 gens/shake, and the
predicted and calculated alpha values did not significantly differ (t=0.02, p<0.98). Reducing
the matrix rank will be important when using 2-dimensional density profile data, which will
square the matrix size for each case.

One source of uncertainty in these data arises from the two different methods used to
calculate alpha. For density profiles where the keff value was greater than 1.02, the MCNP6
acode was used. In the remaining cases, a 14.1 MeV neutron was used to calculate the
system reactivity. We observed slightly larger alpha differences when the system reactivity
was near zero, primarily in the training data. This is likely due to the differences in the
methods to calculate alpha. In real data, the neutrons are generated from photoneutrons
and the distribution in the system is not symmetric. More realistic simulations, at a higher
computational cost, may better simulate real data and reduce the uncertainty in the alpha
predictions.
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